<track id="0gn35"></track>
        <p id="0gn35"><strong id="0gn35"><xmp id="0gn35"></xmp></strong></p>
      1. <pre id="0gn35"><ruby id="0gn35"><menu id="0gn35"></menu></ruby></pre>

      2. <acronym id="0gn35"><strong id="0gn35"></strong></acronym>
        當前位置: 首頁 >> 科學研究 >> 學術報告 >> 正文

        2021年學術報告通知(三)朱善迎:Distributed Optimization over Networks: From Algorithm to Applications

        2021年10月18日 17:54    點擊:[]


        報告題目:Distributed Optimization over Networks: From Algorithm to Applications

        報告人:朱善迎, 上海交通大學




        Distributed optimization has received much attention recently due to its wide applications in sensor fusion, resource allocation and machine learning. Common features of these examples are that there is no centralized center involved and the resources, such as sensing, communication and computation, are usually scattered throughout the network, which necessitate completely distributed algorithms that are preferably robust to the change of network topologies and preserve privacy. In this talk, I will introduce some of our recent works on distributed optimization over networks that can achieve faster convergence rates and/or guarantee privacy. In addition, applications to economic dispatch of power systems will also be discussed in this talk.


        朱善迎,上海交通大學自動化系研究員,博士生導師,國家優青。博士畢業于上海交通大學自動化系。2013年至2015年,在新加坡南洋理工大學以及伯克利教育聯盟(BEARS)開展博士后研究工作。主要研究領域為網絡系統的分布式估計和優化、多智能體協同控制、微能源網的能量管理等。主持國家自然科學基金優青/面上項目、國家重點研發計劃課題等9項,參與國家自然科學基金重大/重點項目等8項。發表論文70余篇,合作出版英文專著一部。曾擔任多個國際會議的TPC/IPC成員、Invited Session/Local Arrangement/Publicity/Track Co-Chair等?,F為IEEE 工業信息學技術委員會委員,中國自動化學會青工委委員以及TCCT 多自主體控制學組委員等。


          2022年度國家自然科學基金項目申報經驗交流及青... 返回目錄 2021年學術報告通知(四)段廣仁:全驅系統方法...